Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Fish Shellfish Immunol ; 144: 109246, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013134

RESUMO

Circular RNAs (circRNAs) are a subclass of non-coding RNAs (ncRNAs) formed through a process known as back-splicing. They play a crucial role in the genetic regulation of various biological processes. Currently, circRNAs have been identified as participants in the antiviral response within mammalian cells. However, circRNAs in shrimp infected with the yellow head virus (YHV) remain largely unexplored. Therefore, this study aims to identify circRNAs in the hemocytes of Litopenaeus vannamei during YHV infection. We discovered 358 differentially expressed circRNAs (DECs), with 177 of them being up-regulated and 181 down-regulated. Subsequently, eight DECs, including circ_alpha-1-inhibitor 3, circ_CDC42 small effector protein 2, circ_hemicentin 2, circ_integrin alpha V, circ_kazal-type proteinase inhibitor, circ_phenoloxidase 3, circ_related protein rab-8B, and circ_protein toll-like, were randomly selected for analysis of their expression patterns during YHV infection using qRT-PCR. Furthermore, the circRNAs' characteristics were confirmed through PCR, RNase R treatment, and Sanger sequencing, all of which were consistent with the features of circRNAs. These findings contribute to a better understanding of circRNAs' involvement in the antiviral response in shrimp.


Assuntos
MicroRNAs , Penaeidae , Roniviridae , Animais , Antivirais , Regulação da Expressão Gênica , MicroRNAs/genética , RNA Circular/genética , Penaeidae/virologia
2.
PeerJ ; 11: e15086, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123012

RESUMO

Yellow head virus (YHV) is one of the most important pathogens in prawn cultivation. The outbreak of YHV could potentially result in collapses in aquaculture industries. Although a flurry of development has been made in searching for preventive and therapeutic approaches against YHV, there is still no effective therapy available in the market. Previously, computational screening has suggested a few cancer drugs to be used as YHV protease (3CLpro) inhibitors. However, their toxic nature is still of concern. Here, we exploited various computational approaches, such as deep learning-based structural modeling, molecular docking, pharmacological prediction, and molecular dynamics simulation, to search for potential YHV 3CLpro inhibitors. A total of 272 chalcones and flavonoids were in silico screened using molecular docking. The bioavailability, toxicity, and specifically drug-likeness of hits were predicted. Among the hits, molecular dynamics simulation and trajectory analysis were performed to scrutinize the compounds with high binding affinity. Herein, the four selected compounds including chalcones cpd26, cpd31 and cpd50, and a flavonoid DN071_f could be novel potent compounds to prevent YHV and GAV propagation in shrimp. The molecular mechanism at the atomistic level is also enclosed that can be used to further antiviral development.


Assuntos
Chalconas , Roniviridae , Peptídeo Hidrolases , Simulação de Acoplamento Molecular , Chalconas/farmacologia , Flavonoides/farmacologia , Endopeptidases
3.
Viruses ; 15(2)2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36851575

RESUMO

At present, there are few studies on the epidemiology of diseases in wild Chinese white shrimp Penaeus chinensis. In order to enrich the epidemiological information of the World Organisation for Animal Health (WOAH)-listed and emerging diseases in wild P. chinensis, we collected a total of 37 wild P. chinensis from the Yellow Sea in the past three years and carried out molecular detection tests for eleven shrimp pathogens. The results showed that infectious hypodermal and hematopoietic necrosis virus (IHHNV), Decapod iridescent virus 1 (DIV1), yellow head virus genotype 8 (YHV-8), and oriental wenrivirus 1 (OWV1) could be detected in collected wild P. chinensis. Among them, the coexistence of IHHNV and DIV1 was confirmed using qPCR, PCR, and sequence analysis with pooled samples. The infection with YHV-8 and OWV1 in shrimp was studied using molecular diagnosis, phylogenetic analysis, and transmission electron microscopy. It is worth highlighting that this study revealed the high prevalence of coinfection with YHV-8 and OWV1 in wild P. chinensis populations and the transmission risk of these viruses between the wild and farmed P. chinensis populations. This study enriches the epidemiological information of WOAH-listed and emerging diseases in wild P. chinensis in the Yellow Sea and raises concerns about biosecurity issues related to wild shrimp resources.


Assuntos
Coinfecção , Densovirinae , Penaeidae , Vírus de RNA , Roniviridae , Animais , Coinfecção/epidemiologia , Coinfecção/veterinária , Roniviridae/genética , Filogenia , Genótipo
4.
Viruses ; 14(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36560598

RESUMO

A co-expressed Penaeus stylirostris densovirus (PstDNV) capsid and dsRNA specific to the yellow head virus (YHV) protease (CoEx cpPstDNV/dspro) has been shown to suppress YHV replication in the Pacific white-legged shrimp (Litopenaeus vannamei). However, maintaining two plasmids in a single bacterial cell is not desirable; therefore, a single plasmid harboring both the PstDNV capsid and the dsRNA-YHV-pro gene was constructed under the regulation of a single T7 promoter, designated pET28a-Linked cpPstDNV-dspro. Following induction, this novel construct expressed an approximately 37-kDa recombinant protein associated with a roughly 400-bp dsRNA (Linked cpPstDNV-dspro). Under a transmission electron microscope, the virus-like particles (VLP; Linked PstDNV VLPs-dspro) obtained were seen to be monodispersed, similar to the native PstDNV virion. A nuclease digestion assay indicated dsRNA molecules were both encapsulated and present outside the Linked PstDNV VLPs-dspro. In addition, the amount of dsRNA produced from this strategy was higher than that obtained with a co-expression strategy. In a YHV infection challenge, the Linked PstDNV VLPs-dspro was more effective in delaying and reducing mortality than other constructs tested. Lastly, the linked construct provides protection for the dsRNA cargo from nucleolytic enzymes present in the shrimp hemolymph. This is the first report of a VLP carrying virus-inhibiting dsRNA that could be produced without disassembly and reassembly to control virus infection in shrimp.


Assuntos
Densovirinae , Densovirus , Penaeidae , Roniviridae , Animais , Roniviridae/genética , Roniviridae/metabolismo , Proteínas do Capsídeo/genética , Proteínas Recombinantes/genética , Densovirus/genética , Densovirinae/genética , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo
5.
Sci Rep ; 11(1): 10534, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006863

RESUMO

Yellow head virus (YHV) is a pathogen which causes high mortality in penaeid shrimp. Previous studies suggested that YHV enters shrimp cells via clathrin-mediated endocytosis. This research investigated the roles of clathrin adaptor protein 2 subunit ß (AP-2ß) from Penaeus monodon during YHV infection. PmAP2-ß was continuously up-regulated more than twofold during 6-36 hpi. Suppression of PmAP2-ß significantly reduced YHV copy numbers and delayed shrimp mortality. Quantitative RT-PCR revealed that knockdown of PmAP2-ß significantly enhanced the expression level of PmSpätzle, a signaling ligand in the Toll pathway, by 30-fold at 6 and 12 hpi. Moreover, the expression levels of gene components in the Imd and JAK/STAT signaling pathways under the suppression of PmAP2-ß during YHV infection were also investigated. Interestingly, anti-lipopolysaccharide factor isoform 3 (ALFPm3) was up-regulated by 40-fold in PmAP2-ß knockdown shrimp upon YHV infection. In addition, silencing of PmAP2-ß dramatically enhanced crustinPm1 expression in YHV-infected shrimp. Knockdown of ALFPm3 and crustinPm1 significantly reduced shrimp survival rate. Taken together, this work suggested that PmAP2-ß-deficiency promoted the Toll pathway signalings, resulting in elevated levels of ALFPm3 and crustinPm1, the crucial antimicrobial peptides in defence against YHV.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Penaeidae/virologia , Roniviridae/isolamento & purificação , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Inativação Gênica , Penaeidae/genética
6.
Fish Shellfish Immunol ; 114: 36-48, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33864947

RESUMO

By using immunohistochemistry detection, yellow head virus (YHV) was found to replicate in granule-containing hemocytes including semi-granular hemocytes (SGC) and granular hemocytes (GC) during the early phase (24 h post injection) of YHV-infected shrimp. Higher signal of YHV infection was found in GC more than in SGC. Comparative phosphoproteomic profiles between YHV-infected and non-infected GC reveal a number of phosphoproteins with different expression levels. The phosphoprotein spot with later on identified as caspase-3 in YHV-infected GC is most interesting. Blocking caspase-3 function using a specific inhibitor (Ac-DEVD-CMK) demonstrated high replication of YHV and consequently, high shrimp mortality. The immunohistochemistry results confirmed the high viral load in shrimp that caspase-3 activity was blocked. Caspase-3 is regulated through a variety of posttranslational modifications, including phosphorylation. Analysis of phosphorylation sites of shrimp caspase-3 revealed phosphorylation sites at serine residue. Taken together, caspase-3 is a hemocytic protein isolated from shrimp granular hemocytes with a role in anti-YHV response and regulated through the phosphorylation process.


Assuntos
Caspase 3/metabolismo , Hemócitos/enzimologia , Penaeidae/virologia , Roniviridae , Animais , Caspase 3/genética , Regulação Enzimológica da Expressão Gênica/imunologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia
7.
Fish Shellfish Immunol ; 112: 8-22, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33600947

RESUMO

In the present study, a hot water crude extract from Ulva intestinalis (Ui-HWCE) was used as a dietary supplement, and the effects on growth, immune responses, and resistance against white spot syndrome virus (WSSV) and yellowhead virus (YHV) infection in Pacific white shrimp (Litopenaeus vannamei) were investigated. Chemical analyses of Ui-HWCE revealed 13.75 ± 0.41% sulfate, 37.86 ± 5.96% uronic acid, and 46.63 ± 5.16% carbohydrate contents. The monosaccharide content of Ui-HWCE contained glucose (6.81 ± 0.94%), xylose (4.15 ± 0.11%), and rhamnose (25.84 ± 0.80%). Functional group analysis of Ui-HWCE by Fourier transform infrared (FTIR) spectroscopy revealed a typical infrared spectrum of ulvan similar to the infrared spectrum of commercially purified ulvan from Ulva armoricana (77.86 ± 2.19% similarity). Ui-HWCE was added to shrimp diets via top-dressing at 0, 1, 5, and 10 g/kg diet. After 28 days, Ui-HWCE supplementation at 5 g/kg diet efficiently improved shrimp growth performance, as indicated by weight gain, average daily growth, specific growth rates, and villus height determined by observing gut morphology. Additionally, Ui-HWCE feed supplementation at 5 g/kg diet significantly increased immune responses against a pathogenic bacterium (Vibrio parahaemolyticus AHPND stain), including phagocytic activity and clearance efficiency. Furthermore, Ui-HWCE feed supplementation upregulated the expression of several immune-related genes in the hemocytes and gills. Ui-HWCE supplementation at 1 and 5 g/kg resulted in effective anti-YHV but not anti-WSSV activity, which significantly decreased the mortality rate and YHV burden in surviving shrimp. It was concluded that Ui-HWCE supplied at 5 g/kg diet exhibits growth-promoting, immune-stimulatory, and antiviral activity that could protect L. vannamei against YHV infection.


Assuntos
Penaeidae/imunologia , Extratos Vegetais/metabolismo , Roniviridae/fisiologia , Ulva/química , Vírus da Síndrome da Mancha Branca 1/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Penaeidae/crescimento & desenvolvimento , Penaeidae/virologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Distribuição Aleatória
8.
J Gen Virol ; 102(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33108263

RESUMO

The family Roniviridae includes the genus Okavirus for three species of viruses with enveloped, rod-shaped virions. The monopartite, positive-sense ssRNA genome (26-27 kb) contains five canonical long open reading frames (ORFs). ORF1a encodes polyprotein pp1a containing proteinase domains. ORF1b is expressed as a large polyprotein pp1ab by ribosomal frameshifting from ORF1a and encodes replication enzymes. ORF2 encodes the nucleoprotein. ORF3 encodes two envelope glycoproteins. ORFX encodes a putative double membrane-spanning protein. Roniviruses infect shrimp but only yellow head virus is highly pathogenic. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Roniviridae, which is available at ictv.global/report/roniviridae.


Assuntos
Roniviridae/classificação , Animais , Genoma Viral , Fases de Leitura Aberta , Penaeidae/virologia , RNA Viral , Roniviridae/genética , Roniviridae/fisiologia , Roniviridae/ultraestrutura , Vírion/ultraestrutura , Replicação Viral
9.
Dev Comp Immunol ; 114: 103824, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32791174

RESUMO

Argonaute family is phylogenetically subdivided into Ago and Piwi subfamilies that operate either transcriptional or post-transcriptional regulation in association with particular types of small RNAs. Among the four members of Ago subfamily (PmAgo1-4) found in black tiger shrimp Penaeus monodon, PmAgo4 exhibits gonad-restricted expression and takes part in transposon repression as the Piwi subfamily. While PmAgo1-3 participate in RNA interference (RNAi)-based mechanism, the role of PmAgo4 in RNAi is still mysterious, and was therefore investigated in this study. The results showed that knockdown of PmAgo4 in shrimp testis did not have a significant effect on the potency of PmRab7 silencing by dsPmRab7. In addition, replication of YHV as well as YHV-induced cumulative mortality in PmAgo4-knockdown shrimp are comparable to the control shrimp, suggesting the irrelevant association of PmAgo4 with RNAi-mediated gene silencing and antiviral immunity. Since PmAgo4 did not function in common with the Ago subfamily, its potential function in gametogenesis of male shrimp was further investigated. The reduction of PmAgo4 transcript levels in male shrimp revealed significant defect in testicular maturity as measured by Testicular Index (TI). Moreover, the numbers of mature sperm in spermatophore of PmAgo4-knockdown shrimp were significantly decreased comparing with the control shrimp. Our studies thus suggest a distinctive role of PmAgo4 that is not consistent with a dsRNA-mediate gene regulation and virus replication, but has a key function in controlling spermatogenesis in P. monodon.


Assuntos
Proteínas Argonautas/genética , Infecções por Nidovirales/imunologia , Penaeidae/fisiologia , Roniviridae/fisiologia , Testículo/metabolismo , Animais , Antivirais/metabolismo , Proteínas Argonautas/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Especificidade de Órgãos , Interferência de RNA , RNA de Cadeia Dupla , Espermatogênese , Replicação Viral
10.
J Biotechnol ; 321: 48-56, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32615142

RESUMO

Outbreaks of diseases caused by yellow head virus (YHV) and white spot syndrome virus (WSSV) infection in shrimp have resulted in economic losses worldwide. DsRNA-mediated RNAi has been used to control these viruses, and the best target genes for efficient inhibition of YHV and WSSV are the protease and ribonuleotide reductase small subunit (rr2), respectively. However, one dsRNA can suppress only one virus, and therefore the production of multi-target dsRNA to effectively inhibit both YHV and WSSV is needed. In this study, plasmids pETpro-rr2_one stem and pETpro-rr2_two stems were constructed to produce two different forms of multi-target dsRNA in E. coli, which were designed specifically to both YHV protease and WSSV rr2 genes. The potency of each dsRNA in inhibiting YHV and WSSV and reducing shrimp death were investigated in L. vannamei. Shrimp were injected with the dsRNAs into the hemolymph before challenge with YHV or WSSV. The results showed that both dsRNAs could inhibit the viruses, however the one stem construct was more effective than the two stems construct when shrimp were infected with WSSV. This study establishes a potential strategy for dual inhibition of YHV and WSSV for further application in shrimp aquaculture.


Assuntos
Antivirais/farmacologia , Penaeidae/virologia , RNA de Cadeia Dupla , Roniviridae/efeitos dos fármacos , Vírus da Síndrome da Mancha Branca 1/efeitos dos fármacos , Animais , Aquicultura , Plasmídeos/genética , Interferência de RNA , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/farmacologia
11.
J Invertebr Pathol ; 175: 107442, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663545

RESUMO

Double-stranded RNA (dsRNA) is employed to down-regulate the expression of specific genes of shrimp viral pathogens through the RNA interference (RNAi) pathway. The administration of dsRNA into shrimp has been shown to be an effective strategy to block yellow head virus (YHV) progression. In this study, a vector (pLVX-AcGFP1-N1) was developed to introduce a long-hairpin RNA (lhRNA) silencing cassette under a CMV promoter, so-called "pLVX-lhRdRp", against the RNA-dependent RNA polymerase (RdRp) gene of YHV. A primary culture of hemocytes isolated from Penaeus monodon was transfected with the pLVX-lhRdRp vector, generating transcripts of lhRNAs as early as 12 h post transfection. Twelve hours prior to YHV challenge, the primary hemocyte cell culture was transfected with pLVX-lhRdRp, whereas control groups were transfected with pLVX-AcGFP1-N1 or no transfection. The group treated with pLVX-lhRdRp significantly suppressed YHV replication at 24-72 h after YHV challenge. The results from RT-PCR and immunohistochemistry confirmed that both mRNA and protein expression of YHV were effectively inhibited by the pLVX-lhRdRp vector. Thus, our hemocyte culture and dsRNA expression plasmid with constitutive promoter have potential as a platform to test DNA constructs expressing long-hairpin RNA against pathogenic viral infection and as a RNAi-based DNA vaccine in shrimp.


Assuntos
Hemócitos/virologia , Penaeidae/virologia , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Roniviridae/fisiologia , Replicação Viral , Animais
12.
Fish Shellfish Immunol ; 95: 449-455, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31678535

RESUMO

Yellow head disease (YHD) is an infectious disease of Penaeus monodon which is caused by the yellow head virus (YHV). YHV infection invariably leads to 100% shrimp mortality within 3-5 days. Currently, an effective method to prevent or cure shrimp from YHV infection has not been elucidated. Therefore, the molecular mechanism underlying YHV infection should be examined. In this study, early endosome antigen 1 (EEA1) protein that was involved in the tethering step of the vesicle and early endosome fusion was investigated during YHV infection. The open reading frame of P. monodon EEA1 (PmEEA1) was cloned and sequenced (3000 bp). It encoded a putative protein of 999 amino acids and contained the zinc finger C2H2 domain signature at the N-terminus and the FYVE domain at the C-terminus. Suppression of PmEEA1 by specific dsRNA in shrimp showed inhibition of YHV replication after 48 h post YHV injection (hpi). On the other hand, shrimp received only NaCl without any dsRNA showed high YHV levels at approximately one hundred thousand times at 24 hpi and 48 hpi. Moreover, silencing of PmEEA1 by specific dsRNA followed by YHV challenge demonstrated a delay in shrimp mortality from 60 hpi to 168 hpi when compared to the control. These results indicated that YHV required PmEEA1 for trafficking within the infected cells, strongly suggesting that PmEEA1 may be a potential target to control and prevent YHV infection in P. monodon.


Assuntos
Interações Hospedeiro-Patógeno , Penaeidae/virologia , Roniviridae/patogenicidade , Proteínas de Transporte Vesicular/imunologia , Viroses/veterinária , Animais , Penaeidae/imunologia , Proteínas de Transporte Vesicular/genética , Viroses/imunologia , Replicação Viral
13.
J Virol Methods ; 273: 113689, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31276700

RESUMO

In 2013, a unique seventh yellow head virus genotype (YHV7) was detected in Black Tiger shrimp (Penaeus monodon) broodstock that suffered high mortality following their capture from Joseph Bonaparte Gulf (JBG) in northern Australia. To assist with its diagnosis and assessment of its distribution, prevalence and pathogenicity, YHV7-specific TaqMan real-time qPCR and conventional nested PCR primer sets were designed to ORF1b gene sequences divergent from the other YHV genotypes. Using high (≥108) copies of plasmid (p)DNA controls containing ORF1b gene inserts of representative strains of YHV genotypes 1-7, both PCR tests displayed specificity for YHV7. Amplifications of serial 10-fold dilutions of quantified YHV7 pDNA and synthetic ssRNA showed that both tests could reliably detect 10 genome copies. Pleopods/gills from wild P. monodon sourced from locations in geographically disparate regions across northern Australia as well as 96 juveniles (48 either appearing normal or displaying signs of morbidity) from a commercial pond experiencing mortalities were screened to partially validate the diagnostic capacity of the qPCR test. Based on these data and PCR primer/probe sequence mismatches with other newly identified YHV genotypes, both YHV7-specific PCR tests should prove useful in the sensitive detection and discrimination of this genotype from YHV 2 (gill-associated virus) and YHV6 that can occur in Australian P. monodon, as well as from YHV genotypes currently listed as exotic to Australia.


Assuntos
Infecções por Nidovirales/veterinária , Penaeidae/virologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Roniviridae/isolamento & purificação , Animais , Austrália , Primers do DNA/genética , Genoma Viral , Genótipo , Brânquias/virologia , Infecções por Nidovirales/mortalidade , Infecções por Nidovirales/virologia , RNA Viral/análise , Roniviridae/genética , Sensibilidade e Especificidade
14.
Front Immunol ; 10: 1430, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31293588

RESUMO

The IKK-NF-κB signaling cascade is one of the crucial responsive mechanisms in inflammatory and immune responses. The key kinase proteins called inhibitor of kappa B kinases (IKKs) serve as the core elements involved in cascade activation. Here, the complete ORFs of IKK homologs, PmIKKß, PmIKKε1, and PmIKKε2, from the black tiger shrimp Penaeus monodon were identified and characterized for their functions in shrimp antiviral responses. The PmIKK transcripts were widely expressed in various examined tissues and the PmIKKε protein was detected in all three types of shrimp hemocytes. Only the PmIKKε1 and PmIKKε2 were responsive to white spot syndrome virus (WSSV), yellow head virus (YHV) and a bacterium Vibrio harveyi infection, while the PmIKKß exhibited no significant response to pathogen infection. On the contrary, suppression of PmIKKß and PmIKKε by dsRNA-mediated RNA interference (RNAi) resulted in a rapid death of WSSV-infected shrimp and the significant reduction of an IFN-like PmVago4 transcript. Whereas, the mRNA levels of the antimicrobial peptides, ALFPm3 and CrustinPm5, and a transcription factor, PmDorsal were significantly increased, those of ALFPm6, CrustinPm1, CrustinPm7, PmVago1, PmRelish, and PmCactus were unaffected. Overexpression of PmIKKß and PmIKKε in HEK293T cells differentially activated the NF-κB and IFNß promoter activities, respectively. These results suggest that the PmIKKß and PmIKKε may act as common factors regulating the expression of immune-related genes from various signaling pathways. Interestingly, the PmIKKs may also contribute a possible role in shrimp cytokine-like system and cross-talking between signaling transductions in innate immune responses.


Assuntos
Proteínas de Artrópodes/imunologia , Quinase I-kappa B/imunologia , Imunidade Inata , Penaeidae/imunologia , Roniviridae/imunologia , Vibrio/imunologia , Vírus da Síndrome da Mancha Branca 1/imunologia , Animais , Penaeidae/microbiologia , Penaeidae/virologia
15.
Sci Rep ; 9(1): 3164, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30816201

RESUMO

RNA interference (RNAi) is an effective way of combating shrimp viruses by using sequence-specific double-stranded (dsRNA) designed to knock down key viral genes. The aim of this study was to use microalgae expressing antiviral dsRNA as a sustainable feed supplement for shrimp offering viral protection. In this proof of concept, we engineered the chloroplast genome of the green microalga Chlamydomonas reinhardtii for the expression of a dsRNA cassette targeting a shrimp yellow head viral gene. We used a previously described chloroplast transformation approach that allows for the generation of stable, marker-free C. reinhardtii transformants without the supplementation of antibiotics. The generated dsRNA-expressing microalgal strain was then used in a shrimp feeding trial to evaluate the efficiency of the algal RNAi-based vaccine against the virus. Shrimps treated with dsRNA-expressed algal cells prior to YHV infection had 50% survival at 8 day-post infection (dpi), whereas 84.1% mortality was observed in control groups exposed to the YHV virus. RT-PCR using viral specific primers revealed a lower infection rate in dsRNA-expressing algae treated shrimp (55.6 ± 11.1%) compared to control groups (88.9 ± 11.1% and 100.0 ± 0.0%, respectively). Our results are promising for using microalgae as a novel, sustainable alternative as a nutritious, anti-viral protective feedstock in shrimp aquaculture.


Assuntos
Chlamydomonas reinhardtii/genética , Microalgas/genética , RNA de Cadeia Dupla/genética , Replicação Viral/genética , Animais , Antivirais/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/virologia , Microalgas/metabolismo , Penaeidae/genética , Penaeidae/virologia , Interferência de RNA , Roniviridae/genética , Roniviridae/patogenicidade , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética
17.
Dev Comp Immunol ; 90: 130-137, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30227218

RESUMO

Argonaute (Ago) proteins, the catalytic component of an RNA-induced silencing complex (RISC) in RNA interference pathway, function in diverse processes, especially in antiviral defense and transposon regulation. So far, cDNAs encoding four members of Argonaute were found in Penaeus monodon (PmAgo1-4). Two PmAgo proteins, PmAgo1 and PmAgo3 shared high percentage of amino acid identity to Ago1 and Ago2, respectively in other Penaeid shrimps. Therefore, the possible roles of PmAgo1 and PmAgo3 upon viral infection in shrimp were characterized in this study. The level of PmAgo1 mRNA expression in shrimp hemolymph was stimulated upon YHV challenge, but not with dsRNA administration. Interestingly, silencing of either PmAgo1 or PmAgo3 using sequence-specific dsRNAs impaired the efficiency of PmRab7-dsRNA to knockdown shrimp endogenous PmRab7 expression. Inhibition of yellow head virus (YHV) replication and delayed mortality rate were also observed in both PmAgo1-and PmAgo3-knockdown shrimp. In addition, silencing of PmAgo3 transcript, but not PmAgo1, revealed partial inhibition of white spot syndrome virus (WSSV) infection and delayed mortality rate. Therefore, our study provides insights into PmAgo1and PmAgo3 functions that are involved in a dsRNA-mediated gene silencing pathway and play roles in YHV and WSSV replication in the shrimp.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Artrópodes/metabolismo , Hemolinfa/metabolismo , Infecções por Nidovirales/imunologia , Penaeidae/imunologia , Roniviridae/fisiologia , Vírus da Síndrome da Mancha Branca 1/fisiologia , Animais , Antivirais/metabolismo , Proteínas Argonautas/genética , Proteínas de Artrópodes/genética , Clonagem Molecular , Elementos de DNA Transponíveis/genética , Imunidade Inata , Interferência de RNA , RNA Interferente Pequeno/genética , Replicação Viral
18.
Dev Comp Immunol ; 88: 137-143, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30031867

RESUMO

Plasmolipin has been characterized as a cell entry receptor for mouse endogenous retrovirus. In black tiger shrimp, two isoforms of plasmolipin genes, PmPLP1 and PmPLP2, have been identified from the Penaeus monodon EST database. The PmPLP1 is highly up-regulated in yellow head virus (YHV)-infected shrimp. Herein, the function of PmPLP1 is shown to be involved in YHV infection. The immunoblotting and immunolocalization showed that the PmPLP1 protein was highly expressed and located at the plasma membrane of gills from YHV-infected shrimp. Moreover, the PmPLP1 expressed in the Sf9 insect cells resided at the cell membrane rendering the cells more susceptible to YHV infection. Using the ELISA binding and mortality assays, the synthetic external loop of PmPLP1 was shown to bind the purified YHV and neutralize the virus resulting in the decrease in YHV infection. Our results suggested that the PmPLP1 was likely a receptor of YHV in shrimp.


Assuntos
Proteínas de Artrópodes/imunologia , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/imunologia , Infecções por Nidovirales/imunologia , Penaeidae/imunologia , Roniviridae/imunologia , Animais , Proteínas de Artrópodes/metabolismo , Membrana Celular/imunologia , Membrana Celular/metabolismo , Brânquias/citologia , Brânquias/imunologia , Brânquias/virologia , Hemócitos/citologia , Hemócitos/imunologia , Hemócitos/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Infecções por Nidovirales/veterinária , Ligação Proteica/imunologia , Roniviridae/metabolismo , Células Sf9 , Spodoptera , Regulação para Cima
20.
Fish Shellfish Immunol ; 79: 18-27, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29729960

RESUMO

In shrimp, the Kazal-type serine proteinase inhibitors (KPIs) are involved in host innate immune defense system against pathogenic microorganisms. A five-Kazal-domain SPIPm2 is the most abundant KPIs in the black tiger shrimp Penaeus monodon and up-regulated in response to yellow head virus (YHV) infection. In this study, the role of SPIPm2 in YHV infection was investigated. The expression of SPIPm2 in hemocytes, gill and heart from 48-h YHV-infected shrimp was increased. The expression of SPIPm2 in hemocytes was significantly increased after 12 h of infection and gradually increased higher afterwards. Silencing of SPIPm2 by dsRNA interference resulted in the increased expression of different apoptosis-related genes, the increased expression of transcriptional factors of antimicrobial synthesis pathways, the reduction of circulating hemocytes in the shrimp hemolymph, and the increased susceptibility of the silenced shrimp to YHV infection. The activities of caspase-3 and caspase-7 in the hemocytes of SPIPm2-silenced shrimp was also increased by 5.32-fold as compared with those of the control shrimp. The results suggested that the SPIPm2 was involved in the hemocyte homeostasis.


Assuntos
Proteínas de Artrópodes/genética , Inativação Gênica , Penaeidae/genética , Penaeidae/imunologia , Roniviridae/fisiologia , Inibidores de Serinopeptidase do Tipo Kazal/genética , Animais , Proteínas de Artrópodes/metabolismo , Perfilação da Expressão Gênica , Brânquias/metabolismo , Coração/fisiologia , Hemócitos/metabolismo , Miocárdio/metabolismo , Penaeidae/virologia , Inibidores de Serinopeptidase do Tipo Kazal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...